Cataloguing Plant Genome Structural Variations
نویسندگان
چکیده
Structural variation (SV) is a type of genetic variation identified through the comparison of genome structures which often have direct and significant associations with phenotypic variations. Building on the next-generation sequencing (NGS) technologies, research on plant structural variations are gaining momentum and have revolutionized our view on the functional impact of the ‘hidden’ diversity that were largely understudied before. Herein, we first describe the current state of plant genomic SV research based on NGS and in particular focus on the biological insights gained from the large-scale identification of various types of plant SVs. Specific examples are chosen to demonstrate the genetic basis for phenotype diversity in model plant and major agricultural crops. Additionally, development of new genomic mapping technologies, including optical mapping and long read sequencing, as well as improved computational algorithms associated with these technologies have helped to pinpoint the exact nature and location of genomic SVs with much better resolution and precision. Future direction of plant research on SVs should focus on the population level to build a comprehensive catalogue of SVs, leading to full assessment of their impact on biological diversity. Introduction Structural variations (SVs) are a collection of complex genomic DNA mutations that differentiate among individuals in a certain population. In contrast to single nucleotide polymorphisms (SNPs) and short insertions and deletions (indels), SVs typically consist of DNA changes that are relatively long in size. The initial detection of SVs before the advent of the sequencing era is often based on detection of large scale chromosomal changes from karyotypic observation under microscope, including abnormal number of chromosomes such as aneuploidies ( Jacobs et al., 1959; Edwards et al., 1960), chromosomal rearrangement (Bobrow et al., 1971) and copy number variations (CNVs) (Bailey and Eichler 2006). Karyotypic mutations larger than 3 Mb in size can often be observed with in situ hybridization. Building on the next-generation sequencing (NGS) technology, we are moving towards a new phase of variant discovery that focus on identification of SVs with their boundaries mapped at single-base resolution. Extensive studies on the human genome have revealed that SVs play important roles in human health (Spielmann and Klopocki 2013; Weischenfeldt et al., 2013). For example, Alzheimer’s disease (AD) is a chronic neurodegenerative disease that usually badly affects the elder with symptoms such as problems with Curr. Issues Mol. Biol. Vol. 27
منابع مشابه
Cataloging Plant Genome Structural Variations.
Structural variation (SV) is a type of genetic variation identified through the comparison of genome structures which often have direct and significant associations with phenotypic variations. Building on the next generation sequencing (NGS) technologies, research on plant structural variations are gaining momentum and have revolutionized our view on the functional impact of the 'hidden' divers...
متن کاملHigh-resolution genetic mapping of maize pan-genome sequence anchors
In addition to single-nucleotide polymorphisms, structural variation is abundant in many plant genomes. The structural variation across a species can be represented by a 'pan-genome', which is essential to fully understand the genetic control of phenotypes. However, the pan-genome's complexity hinders its accurate assembly via sequence alignment. Here we demonstrate an approach to facilitate pa...
متن کاملStructural variants in the soybean genome localize to clusters of biotic stress-response genes.
Genome-wide structural and gene content variations are hypothesized to drive important phenotypic variation within a species. Structural and gene content variations were assessed among four soybean (Glycine max) genotypes using array hybridization and targeted resequencing. Many chromosomes exhibited relatively low rates of structural variation (SV) among genotypes. However, several regions exh...
متن کاملStructural variations in plant genomes
Differences between plant genomes range from single nucleotide polymorphisms to large-scale duplications, deletions and rearrangements. The large polymorphisms are termed structural variants (SVs). SVs have received significant attention in human genetics and were found to be responsible for various chronic diseases. However, little effort has been directed towards understanding the role of SVs...
متن کاملPlant genome size variation: bloating and purging DNA.
Plant genome size variation is a dynamic process of bloating and purging DNA. While it was thought plants were on a path to obesity through continual DNA bloating, recent research supports that most plants activity purge DNA. Plant genome size research has greatly benefited from the cataloguing of genome size estimates at the Kew Plant DNA C-values Database, and the recent availability of over ...
متن کامل